The authors thank Professor M. A. Viswamitra, Department of Physics, Indian Institute of Science, for the data and Dr T. P. Sheshadri, Department of Physics, Indian Institute of Science, for useful discussions. One of the authors (KTV) thanks the Council of Scientific and Industrial Research, New Delhi, for financial assistance.

#### References

HANUMANTHGAD, S. S., KULKARNI, M. V. & PATIL, V. D. (1984). Natl Acad. Sci. Lett. (India), 7, 77–78. KOELSCH, C. F. (1950). J. Am. Chem. Soc. 72, 2993-2995.

- Kulkarni, M. V., Patil, V. D., Biradar, V. N. & Nanjappa, S. (1981). Arch Pharm. (Weinheim), **314**, 435–439.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- North, A. C. T., Phillips, D. C. & Mathews, F. D. (1968). Acta Cryst. A24, 351-359.
- RAO, C. N. R. (1963). Chemical Applications of Infra-red Spectroscopy, pp. 203–204. New York: Academic Press.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 777-779

## Structure of the Aglycone Ethyl Ether of Jasminin

By K. Takahashi and T. Kamikawa

Department of Chemistry, Faculty of Science and Technology, Kinki University, Higashi-Osaka, Osaka 577, Japan

## M. Asaka

Department of Chemistry, Faculty of General Education, Kinki University, Higashi-Osaka, Osaka 577, Japan

## AND M. FUKUYO

Department of Chemistry, Faculty of Science, Osaka City University, Osaka, Osaka 558, Japan

(Received 3 February 1990; accepted 3 July 1990)

Abstract. rel-(7S, 14S, 15S, 17S)-7-Ethoxy-8-(E)-ethylidene-17-methyl-15-[(1S)-1-methyl-2-hydroxyethyl]-2,6,12-trioxatricyclo[12.2.1.0<sup>4,9</sup>]heptadec-4-ene-3,11- $C_{22}H_{32}O_7$ ,  $M_r = 408.49$ , orthorhombic, dione. a = 25.773(15),b = 10.540(3), $P2_{1}2_{1}2_{1}$ c =V = 2196.8 (2) Å<sup>3</sup>, Z = 4,  $D_r =$ 8.087 (5) Å.  $1.24 \text{ g cm}^{-3}$ ,  $\lambda(\text{Cu } K\alpha) = 1.5418 \text{ Å}$ ,  $\mu = 7.14 \text{ cm}^{-1}$ , F(000) = 880, T = 299 K, R = 0.043 for 2294 observed reflections. The molecular structure of the aglycone ethyl ether of jasminin is consistent with the structure of jasminin proposed from the results of chemical and spectroscopic methods.

**Introduction.** The structure of jasminin (1), the bitter principle of Jasmininum mesnyi (unnan oubai) has been extensively studied by chemical and spectroscopic methods (Kamikawa, Inoue & Kubota, 1970; Asaka, Kamikawa & Kubota, 1974). The hydrolysis of jasminin by p-toluenesulfonic acid in ethanol gives the title compound, the aglycone ethyl ether (2), in which the  $\beta$ -D-glucose unit of jasminin is replaced with ethyl ether by  $SN_2$  substitution. The bromination of the aglycone ethyl ether gives the bromide derivative (3). Preliminary X-ray analysis of (3)

0108-2701/91/040777-03\$03.00

has been performed by the Patterson method (Fukuyo & Shimada, 1969). Crystallographic data for (3) are a = 26.54, b = 10.14, c = 8.43 Å,  $P2_12_12_1$ , R = 0.16. The structure of jasminin has been uncertain because of the possibility of skeletal transformation by ethanolysis.



Recently, <sup>13</sup>C NMR spectra of aglycone ethyl ether (2) and jasminin (1) were recorded (Inoue & Kuwashima, 1990). The <sup>13</sup>C NMR spectrum of jasminin is similar to that of its aglycone ethyl ether: corresponding chemical shifts and peak splittings

© 1991 International Union of Crystallography

Table 1. Atomic coordinates  $(\times 10^4)$  and equivalent Table 2. Bond lengths (Å) and angles (°) of the isotropic temperature factors ( $Å^2 \times 10^3$ ) with e.s.d.'s in aglycone ethyl ether of jasminin with e.s.d.'s in parentheses

parentheses

| $U_{\rm eq} = 1/3(U_{11} + U_{22} + U_{33}).$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | O(1)—C(16)                                 | 1-321 (12)      | O(1)—C(25)                                                              | 1.486 (12)   |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------|-----------------|-------------------------------------------------------------------------|--------------|
|                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>T</b> 1       | O(2) - C(8)                                | 1.353 (11)      | O(2) - C(18)<br>O(4) - C(12)                                            | 1.482 (12)   |
| x y                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ueq              | O(3) - C(3)                                | 1.345 (13)      | O(4) - C(12)                                                            | 1.338 (14)   |
| 3898 (2) 3999 (                               | 6) - 591 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61 (2)           | O(5) - C(29)                               | 1.467 (16)      | O(6) - C(16)                                                            | 1.168 (14)   |
| 4087 (2) 5029 (                               | 6) 2652 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56 (2)           | O(7) - C(26)                               | 1.398 (20)      | C(8) - C(14)                                                            | 1.497 (13)   |
| 4500 (2) 3880 (                               | 6) 4568 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60 (2)           | C(9) - C(11)                               | 1.498 (15)      | C(9) - C(12)                                                            | 1.470 (16)   |
| 3104 (2) 2089 (                               | 6) 5582 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72 (3)           | C(9) - C(21)                               | 1.356 (18)      | C(10) - C(17)                                                           | 1.506 (14)   |
| 2885 (3) 7/5 (                                | 5) 3434 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 (3)           | C(10) - C(18)                              | 1.509 (15)      | C(11) - C(14)                                                           | 1.540 (14)   |
| 4269 (3) 2182 (                               | /) 48 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101 (3)          | C(11) - C(24)                              | 1.564 (14)      | C(13)-C(14)                                                             | 1.308 (14)   |
| 4094 (5) 9892 (                               | (10) = 1974(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147 (5)          | C(15) - C(18)                              | 1.500 (14)      | C(15)-C(19)                                                             | 1.512 (14)   |
| 4127 (3) 4080 (                               | 3/12(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48 (3)           | C(15) - C(20)                              | 1.528 (14)      | C(16) - C(24)                                                           | 1.476 (15)   |
| 2/36 (4) 29/6 (                               | 10) 3106 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64 (4)<br>(( (1) | C(17) - C(20)                              | 1.558 (14)      | C(17) - C(23)                                                           | 1.514 (14)   |
| 4390 (4) 0983 (                               | 9) 1584 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00 (4)           | C(20) - C(25)                              | 1.568 (15)      | C(21) - C(27)                                                           | 1.435 (20)   |
| 3245 (3) 3410 (                               | 9) 2413 (12)<br>10) 4100 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60 (4)<br>72 (4) | $C(22) \rightarrow C(23)$                  | 1.495 (15)      | C(23) - C(26)                                                           | 1.579 (19)   |
| 2/42 (4) 1857 (                               | 10) 4190 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2 (4)           | C(28) - C(29)                              | 1.396 (19)      | 0(10) 0(10)                                                             |              |
| 3540 (4) 2739 (                               | 10) 5259 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 (4)<br>59 (4) | 0(-0) 0(-)                                 |                 |                                                                         |              |
| 3039 (3) 3312 (                               | 9) 5859 (12)<br>8) 1075 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38 (4)           | $C(16) \rightarrow O(1) \rightarrow C(25)$ | 117.8 (8)       | $C(8) \rightarrow O(2) \rightarrow C(18)$                               | 115.5 (7)    |
| 4000 (3) 5097 (                               | $(0) \qquad (17) \qquad ($ | 49 (3)           | C(12) - O(4) - C(13)                       | 117.0 (8)       | C(12)O(5)C(29                                                           | ) 115.6 (9)  |
| 4286 (3) 6674 (                               | (3) - 199(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 (3)           | O(2) - C(8) - O(3)                         | 124.1 (8)       | O(2) - C(8) - C(14)                                                     | 111.1 (7)    |
| 4260 (3) 0074 (                               | (1) $(11)$ $(12)$ $(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56 (4)           | O(3) - C(8) - C(14)                        | 124.8 (8)       | C(11)-C(9)-C(12                                                         | 117.3 (9)    |
| 5446 (A) 5513 (                               | (10) $(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71 (4)           | C(11) - C(9) - C(21)                       | 123-6 (11)      | C(12)-C(9)-C(21                                                         | 119.1(11)    |
| 4640 (3) 5508 (                               | (10) $(13)$ $(14)$ $(14)$ $(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59 (3)           | C(17)-C(10)-C(18                           | 3) 105-1 (8)    | C(9)-C(11)-C(14                                                         | ) 106.1 (8)  |
| 4040 (3) 3508 (<br>2277 (4) 3550 (            | (12) - 338(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87 (5)           | C(9) - C(11) - C(24)                       | 111-2 (8)       | C(14)-C(11)-C(2                                                         | 4) 111.4 (8) |
| 4260 (4) 7375 (                               | $(12) \qquad 2773 (17) \qquad (12) \qquad (12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67 (J)<br>68 (A) | O(4) - C(12) - O(5)                        | 107.8 (9)       | O(4) - C(12) - C(9)                                                     | 109.1 (9)    |
| 4200 (4) 7373 (                               | (10) = 3172(12)<br>(10) = 1417(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70 (4)           | O(5) - C(12) - C(9)                        | 114.9 (10)      | O(4)-C(13)-C(14                                                         | ) 125.2 (10) |
| 4556 (4) 7751 (                               | (9) = 1417(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 (4)<br>61 (4) | C(8) - C(14) - C(11)                       | 119.4 (8)       | C(8)-C(14)-C(13                                                         | ) 116.4 (9)  |
| 4361 (4) 4421 (                               | (12) $(12)$ $(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61 (4)           | $C(1) \rightarrow C(14) \rightarrow C(13)$ | 123.4(9)        | $\dot{c}\dot{l}\dot{s}$ $\dot{c}\dot{l}\dot{s}$ $\dot{c}\dot{l}\dot{s}$ | 9) 111·2 (8) |
| 2002 (6) 2886 (                               | (11) = 895(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102 (5)          | C(18)-C(15)-C(20                           | )) 103.6 (8)    | C(19)-C(15)-C(2                                                         | 111.7(8)     |
| 2204 (4) 4678 (                               | (17) $(13)$ $(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102 (5)          | O(1)-C(16)-O(6)                            | 124.4 (10)      | O(1)-C(16)-C(24                                                         | ) 110.4 (9)  |
| 3046(5) - 1386(                               | (12) 3569 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107 (6)          | O(6)-C(16)-C(24)                           | 125.2 (10)      | C(10)-C(17)-C(2                                                         | 0) 103.8 (8) |
| 2853(5) - 367(                                | (12) $(13)$ $(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107 (0)          | C(10)-C(17)-C(2                            | 3) 116-0 (8)    | C(20)-C(17)-C(2                                                         | 3) 113.5 (8) |
| 2000 (0)                                      | 12) +104 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105 (5)          | O(2) - C(18) - C(10)                       | 106-6 (8)       | O(2) - C(18) - C(15)                                                    | ) 110.6 (8)  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | C(10)-C(18)-C(1                            | 5) 105.2 (8)    | C(15)-C(20)-C(1                                                         | 7) 107.8 (8) |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | C(15)-C(20)-C(2                            | 5) 114.9 (8)    | C(17)-C(20)-C(2                                                         | 5) 113.7 (8) |
| erved. This encour                            | aged us to deter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(9)-C(21)-C(27) | 126.3 (13)                                 | C(17)-C(23)-C(2 | 2) 113.5 (9)                                                            |              |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | C(17)-C(23)-C(20                           | 5) 108·7 (9)    | C(22)-C(23)-C(2                                                         | 6) 110.7 (9) |
| ucture of agrycone ethyl ether of jasminin as |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | C(11) - C(24) - C(10)                      | 5) 118.9 (9)    | O(1)-C(25)-C(20                                                         | ) 109-0 (8)  |
| of the jasminin str                           | ucture based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(7)-C(26)-C(23  | 107.3 (12)                                 | O(5)-C(29)-C(28 | í 108·1 (11)                                                            |              |

were obse X-ray stru a check of the jasminin structure based on chemical methods.

**Experimental.** The aglycone ethyl ether of jasminin was obtained as described elsewhere (Asaka, Kamikawa & Kubota, 1974). A needle crystal  $0.5 \times$  $0.2 \times 0.2$  mm, Rigaku AFC-6 diffractometer, graphite-monochromated Cu  $K\alpha$  radiation ( $\lambda$  = 1.5418 Å), at T = 299 K, cell parameters by least squares on setting angles of 20 reflections ( $20 < 2\theta <$ 28°), 2294 unique reflections, of which 1153 were treated as observed in the refinement based on I > $3\sigma(l), 2\theta_{\text{max}} = 135^{\circ} (0 < h < 30, 0 < k < 12, 0 < l < 0$ 9),  $\omega/2\theta$  scan mode, scan speed 4° min<sup>-1</sup>, scan width  $(1.257 + 0.5\tan\theta)^\circ$ , background measured for 5 s on each side of the peaks, three standard reflections monitored every 200 reflections, no significant variation in intensity, no absorption correction, structure solved by MULTAN87 (Debaerdemaeker, Germain, Main, Tate & Woolfson, 1987) on an INMOS T800 processor. In the final cycles of block-matrix leastsquares refinement, all non-H atoms refined anisotropically, H atoms were placed at reasonable positions and refined isotropically, 261 parameters refined,  $\sum w \Delta F^2$  minimized with  $w = 1/[\sigma^2(F_o) +$ 10.00474 $F_o^2$ ]. R = 0.043, wR = 0.053, S = 1.219,  $(\Delta/\sigma)_{max} = 0.1$ ,  $\Delta\rho_{max} = 0.29$ ,  $\Delta\rho_{min} = -0.35 \text{ e}^{\text{A}^{-3}}$ , scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV).

The coordinates and equivalent isotropic thermal parameters are given in Table 1. Bond lengths and angles are shown in Table 2. An ORTEPII (Johnson, 1976) drawing of the aglycone ethyl ether of jasminin is given in Fig. 1.\* The alcoholic oxygen forms an intermolecular hydrogen bond to the carbonyl oxygen [O(3)] of one of the lactones.

**Discussion.** The structure of the aglycone ethyl ether of jasminin (2) is basically the same as that of the bromide derivative (3). The bromination does not cause any conformational deformation of the aglycone ethyl ether.

Bond lengths in the carbonyl moieties of lactones (1.176, 1.168 Å) of the aglycone ethyl ether are shorter than the usual value for a carbonyl group.

<sup>13</sup>C NMR spectra were measured for jasminin, its aglycone ethyl ether and the natural jasminin derivative, compound (4), which had the same ring structure as jasminin and another  $\beta$ -D-glucose at C(26)

O(1) O(2) O(3) O(4) O(5) 0(6) **O**(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18)

C(19) C(20) C(21) C(22) C(23)

C(24) C(25) C(26) C(27) C(28) C(29)

<sup>\*</sup> Lists of structure factors  $F_o$  and  $\sigma$ , anisotropic thermal parameters, H-atom coordinates, bond lengths, bond angles and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53392 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.



Fig. 1. ORTEP drawing of the aglycone ethyl ether of jasminin with thermal ellipsoids at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

(Inoue & Kuwashima, 1990). The absorption lines were similar among all compounds. This means these compounds have the same chemical ring structure. In Fig. 2, <sup>13</sup>C chemical shifts of these compounds are shown. Chemical-shift differences ( $\Delta\delta$ ) between jasminin and the other compounds are shown against the chemical shift of jasminin. The chemical-shift values of jasminin (1) and its derivative (4) are quite similar. Larger chemical-shift differences between the aglycone ethyl ether and the other compounds are observed than those between jasminin and its derivative (4). This suggests that the three-dimensional conformation of the aglycone ethyl ether differs from natural jasminin derivatives although they have the same chemical structures.

Just one large chemical-shift difference between jasminin and jasminin  $\beta$ -D-glucoside (4) exists, for C(17). This suggests that (4) has a through-space interaction between C(17) and  $\beta$ -D-glucose.

The conformational difference based on <sup>13</sup>C NMR spectra suggests the possibility that jasminin has a different conformation from its aglycone ethyl ether. An X-ray analysis of jasminin would be interesting and would be expected to show the relationship



Fig. 2. <sup>13</sup>C NMR chemical-shift differences of jasminin derivatives against jasminin. The abscissa shows the chemical shift of jasminin. The ordinate shows the chemical shift difference  $\Delta\delta$  between jasminin (1) and its derivatives: the aglycone ethyl ether of jasminin (2) (broken line), jasminin  $\beta$ -D-glucoside (4) (solid line).

between the chemical structure and the threedimensional conformation. We are now trying to make good-quality single crystals of jasminin and related compounds.

#### References

- ASAKA, Y., KAMIKAWA, T. & KUBOTA, T. (1974). Tetrahedron, 30, 3257–3262.
- DEBAERDEMAEKER, T., GERMAIN, G., MAIN, P., TATE, C. & WOOLFSON, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- FUKUYO, M. & SHIMADA, A. (1969). Abstr. 22nd Annu. Meet. Chem. Soc. Jpn, p. 66.
- INOUE, K. & KUWASHIMA, H. (1990). Private communication.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- KAMIKAWA, T., INOUE, K. & KUBOTA, T. (1970). Tetrahedron, 26, 4561–4587.

Acta Cryst. (1991). C47, 779-781

# Structure of 4,7-Diacetoxy-12,15-difluorohexacyclo-[8.6.0.0<sup>2,15</sup>.0<sup>3,8</sup>.0<sup>9,12</sup>.0<sup>11,16</sup>]hexadeca-3,5,7-triene-13,14-dicarboxylic Anhydride

BY MASARU KIMURA, HIDEKI OKAMOTO, SHIRO MOROSAWA AND SETSUO KASHINO

Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 7 June 1990; accepted 4 July 1990)

**Abstract.**  $C_{22}H_{16}F_2O_7$ ,  $M_r = 430.37$ , m.p. = 511– 8,  $D_x = 1.532$  Mg m<sup>-3</sup>, Cu K $\alpha$  ( $\lambda = 1.54178$  Å),  $\mu = 514$  K, orthorhombic, *Pcab*, a = 14.364 (1), b = 1.05 mm<sup>-1</sup>, *F*(000) = 2224, *T* = 289 K, *R* = 0.050 for 29.662 (3), c = 8.7612 (6) Å, V = 3732.9 (5) Å<sup>3</sup>, Z = 2852 non-zero reflections. The mirror symmetry of

0108-2701/91/040779-03\$03.00 © 1991 International Union of Crystallography